AAAI-92

D'Ippolito
April 15, 1992

Modeling Software Systems by Domains

Richard D’Ippolito and Kenneth Lee N
Software Engineering Institute
Carnegie Mellon University

The Software Architectures Engineering (SAE)
- ‘Project at the Software Engineering Institute (SEI)
has developed engineering modeling techniques that
both reduce the complexity of software for domain-
specific computer systems and result in systems that
are easier to build and maintain. These techniques
allow maximum freedom for system developers to
apply their domain expertise to software.

We have applied these techniques to several types of
applications, including training simulators
operating in real time, engineering simulators
_ operating in non-real time, and real-time embedded
computer systems. Our modeling techniques result
in software that mirrors both the complexity of the
application and the domain knowledge
requirements. We submit that the proper measure of
software complexity reflects neither the number of
software component units nor the code count, but
the locus of and amount of domain knowledge. As a
result of using these techniques, domain knowledge
is isolated by fields of engineering expertise and
removed from the concern of the software engineer.
In this paper, we will describe kinds of domain
expertise, describe engineering by domains, and
provide relevant examples of software developed for
simulator applications using the techniques. =~

Separation of Concerns by Domain
Expertise

We classify computer system developers by expertise
and role using three categories: systems analyst,
domain engineer, and software engineer. Systems
analysts are responsible for defining the policy,
strategy, and use of the application to be developed,
e.g., the concept of operations, and the training
requirements. Domain engineers are the modelers
responsible for determining which real-world
entities need to be modeled to satisfy the policy,
strategy, and use defined by the systems analysts.

This work is sponsored by the U.S. Department of Defense.
The SAE project members are Richard D’Ippolito, Kenneth
Lee, Charles Plinta, and Jeffrey Stewart.

35

97145

Domain engineers determine if and how the entities
selected to be modeled can be specified within the
constraints imposed by the software engineers.
Finally, they express the models in the language
natural to their domain, Software engineers are
responsible for defining a consistent software
structure into which the domain expertise will go,

_ and providing translations from the domain-specific

natural languages into executable software.

It is not generally possible to reduce the amount of
domain knowledge required to either develop or
enhance a software-dependent system. To borrow a
phrase from Albert Einstein, our system models
should be as simple as necessary, but no simpler. If
we can separate the design of the models from the
design of the software, we can separate the tasks of
the domain engineer from the tasks of the software
engineer. This would allow the software engineer to
make simplifications in the software packaging and
execution structures which would not affect the way
the domain engineer expresses the models. It would

" also allow the domain engineer the freedom to

design model algorithms without requiring
specialized software knowledge. In effect, each
engineer is relieved of the burden of becoming an

" “expert in other domains of expertise.

We have found that this separation of concerns by
domain expertise is what enables us to simplify the
overall design process and gain a more enhanceable
(maintainable) computer system.

Engineering by Domain

In our vocabulary, a domain is a specific field of
engineering expertise. Engineering expertise is
classified by families of models and related sets of

- practices for applying the models, not by the

problems to which the expertise is applied. Common
classifications of engineering domains are: electrical,
civil, nuclear, mechanical, chemical, and (the as yet
undefined field of) software engineering. An
application area consists of related problems that
can be described using models from a variety of
domains. Examples of application areas are
command and control systems, factory automation

0

¥

6..
b

AAAI-92

sysl;emsi embedded systems, and simulator
systems'. Thus, a flight simulator application
requires domain expertise in aeronautical
engineering, electrical engineering, mechanical

engineering, and so on.

Models are reusable, adaptable, engineering assets
because they are patterns expressed in their most
general form and are scalable, usually through
templates. A good example of a templated model is a
dress pattern, where all of the cut-lines are given by
dress size.

We classify models using two major types, which we
call product models and practice models?. The
product model, when scaled, results in a component
of the delivered product. The dress pattern is an
example of a product model, as is the set of
engineering drawings for an I-beam or a DC motor.
Clearly, the dress pattern is no good without the
practice know-how of fabric and thread selection,
cutting, stitching, hemming, pleating, and all of the
other activities needed to produce the final product.
As a commercial venture, dress-making would
require in addition to the product models the
assembly-line models, materials-handling models,
business and economic models, and so on. All of
these models are what we call the practice models,
because they define the established body of practice
around the product models. Interestingly, the more
mature an engineering discipline, the more the
product and practice models will be public. In a
mature discipline, the business enterprise seeks
value added through system composition (model
application), not model creation or refinement,
which are seen as adjunct activities to be
undertaken only when necessary to complete an
application. SRR

In the construction industry (civil engineering and
architecture), for example, all engineering firms

1. As an example, consider the domain of a rope where
force is transmitted through tension in a flexible
member (try using a rope under compression to push
an object). Mechanical engineers have no problem
applying the same rope design models, i.e., the
domain expertise, to suspension bridges, elevators,
cranes, and fishing rods, yet the application areas will
seemn quite unrelated to those not proficient in the
domain.

2. We have deliberately avoided the overloaded term
process, preferring to reserve it for its traditional
engineering reference to a controlled activity within a
plant or machine. We use practice to refer to those
engineering activities that support product
development.

36

D'Ippolito
April 15, 1992

have access to the same materials, material costs,
implementation practice (labor), and labor costs. In
these cases, the firms compete on system
composition, where success is meeting the
customer’s needs with a timely and economical
design. Electrical engineers do not manufacture
their own wire, integrated circuits, resistors, and
other electrical and mechanical components, but
compete on the basis of using these components
efficiently to satisfy a need. The information on the
components themselves is found in engineering
databooks (usually manufacturer’s publications),
and engineering handbooks which are compendia of
the practice knowledge. Both require an experienced
practitioner with an in-depth education to interpret,
however, as one cannot learn and practice an
engineering discipline solely from the handbooks.
With that education, however, the use of the
handbooks will go a long way toward guaranteeing a
successful routine (precedented) design. The use of
the handbooks are not intended to support
innovative design.

SAE has been very successful in applying models
across various software application areas because
our models have captured patterns of structure and
behavior at the domain level. The Object-
Connection-Update (OCU) model® is a good example
of a building block that allows the domain engineer
to capture the patterns of structure and behavior of
the real-world subsystems being modeled®.
Originally created for flight simulators, the OCU
was immediately applied to the design of the seeker
subsystem of an anti-tank missile and is now being
used in the design of subsystems for engineering
simulators. What made these applications of the
model possible was the capturing of the basic
pattern of subsystem operation into a few
standardized architectural elements® (models), each
responsible for a particular subsystem task.
Complexity is reduced because any subsystem can
(and must) be expressed using only these basic
elements, thus constraining the choice of solution
structures available for consideration. Systems
analysts, domain engineers, and software engineers

3. The seminal report on the OCU is CMU/SEI-88-TR-30,
An OOD Paradigm for Flight Simulators, 2nd
Edition. This report, however, is dated relative to
current SAE experience and is being updated. We are,
also, in the process of writing a series of white papers
that will fully describe the OCU and the engineering
of software-dependent aystems.

4. In our terms, the total application is composed of
subsystems so that those who wish may apply the
term system to the whole.

AAAI-92

are able to make use of the OCU as the basis for
their separation of concerns; the OCU is the
framework that ensures all activities will work
together.

OCU Subsystem Examples

The OCU, produced by the software engineers,
guides the systems analysts and domain engineers
by providing the fundamental pattern of analysis
and the structure for model capture. The systems
analysts, with the foreknowledge that the ultimate
software implementation will be subsystems
captured by the OCU, will be guided to view the

5. The basic elements are controllers, objects, import
areas, export areas, surrogates, and device handlers.
Controllers are the loci of subsystem connection and
operation information; objects provide the subsystem
services; import areas provide the subsystem with a
view to the external world; export areas provide a
window into the subsystem state for the external
world; surrogates translate information from external
formats to internal formats and back; and device
handlers handle external-world communications. All
instances of each of these elements are of the same
form (implementation structure).

Subsystem Form

D'Ippolito
April 15, 1992

Figure 1: OCU Subsystem Diagram

application as a collection of subsystems. The
domain engineers, with the same foreknowledge,
will be guided to compose models as collections of
subsystems, each composed of objects organized by a
controller. We will show in the following examples,
taken from a simulator application, how the OCU
provides this guidance.

 Before we describe how the OCU provides this

guidance, we will provide more detail about the OCU
Controller Template

Subsystem Name:

Description:

Overview of Requirements:

Objects:

imports:

Name Type Source

Exports:

Name Type Destination

Update Algorithm:

package <subsystem_name>_Controller is

-- every subsystem controller has an update procedure
-- called by the executive

procedure Update;

end <subsystem_name>_Controller;

with SEU; -- global types

with <subsystem_name>_Types; —~ the ‘local’ types
with <subsystem_name>_lmports;

with <subsystem_name>_Exports;

- all objects that are part of this subsystem
with <Object_1>_Manager;
with <Object_2>_Manager;
with <Object_3>_Manager;
with <Object_4>_Manager;
with <Object_5>_Manager;

package body <subsystem_name>_Controller is
-- local variables declared here
type <typels;
type <type2>;

procedure Update is
begin
-- controller update algorithm goes here
end Update;

end <subsystem_name>_Controlier;

Figure 2: Subsystem Specification Form and Controller Template

37

AAAI-92

itself. We have found that the general patterns of
operation of subsystems in any domain can be
captured in a universal structure. These patterns
involve separation of mission from operation,
localization of state, activation and control of
subsystems, and transfer of information. Separation
of mission from operation is derived from a principle
that is fundamental to all human and machine
behavior: the mechanism of making decisions should
be separate from the mechanisms used to carry out
the decisions. Localization of state is derived from
the fundamental software engineering principle of
information hiding. In the OCU (Figure 1), the
controller is the locus of decision making, and the
objects provide the service mechanisms and the
localization of state.

We knew that we could reduce the software
complexity by repeated use of a small number of
elements, a standard method of information
transfer, and a standard method of control. We also
knew that a maintainable system required closely
related services be isolated from other, unrelated,
services. In software engineering terms, this means
coupling between unrelated entities is minimized,

Sonar Subsystem Form

D'Ippolito
April 15, 1992

cohesion between related entities is maximized, and
maintainability is enhanced by repeated use of the
same patterns. In the OCU, isolation and
information transfer is provided by the import and
export areas. Cohesion among the objects in a
subsystem is enforced by having the controller be
the sole entity that implements connections to
objects. We have found this set of elements: objects,
controllers, export areas, and import areas, to be
sufﬁclent for descﬁbmg any real-world subsystem.

We, as soﬁware engmeers, have implemented the
elements of the OCU in Ada. We have captured the
patterns with a subsystem specification form and a
set of element code templates.

The OCU is applied with the aid of the subsystem
specification form and the element code templates,
subsets of which are shown in Figure 2 (only the

“controller template is shown). The subsystem form

provides a standard way for the systems analyst and
domain engineers to record the specifications of
subsystems in terms of the known compositional
elements of subsystems, as shown in Figure 3. The
subsystem templates provide a standard way for the

Sonar Controller Code

Subsystem Name: Sonar

The sonar subsystem s used to locale mine-like objects. Its ransmit power
level and pulse repetition rate are controlied by the console operator. The
received signals are sent to the console.

References: ~ SW5TO-EO-MMO-020
pp. 3-5
pp. 7- all
FO-8
FO-12
Telemetry Data Format
MNV-Engineering Worksheet
Schematic Slide
Sonar Soundhead
Sonar Tilt Potentiometer
Fiow Control Servo_Valve
Rotary Actuator
Imports:
Nams Tyns Source
Rate_Cmd Voits Electronics Unit
Xmit_Level_Cmd Xmit_Leve! Electronics Unit
Slew_Rate_Limit_Cmd Slew_Rate_Limit Electronics Unit
Range_Reset_Cmd Range_Reset Electronics Unit
Sonar_Received_Signal Sonar_Signal Environment
Pulse_Repetiton_Rate_Cmd Pulse_Repetition_Rate Electronics Unit
Hydraulic_Pressure_Available Hydrauiic_Pressure Hydraulic System
Exports:
Nams Type Destination
Sonar_Tilt_Potentiometer_Voltage Voits Electronics Unit
Composite Video Sonar_Video_Signal Electronics Unit
Sonar Transmitted Signal Sonar_Signal Environment

package Sonar_Conbroller is

- every subsystem controller has an update procedure
- called by the executive
procedure Update;

end Sonar_Controller;

with SEU; -- global types

with Sonar_Types; -- the ‘local’ types
with Sonar_Iimports;

with Sonar_Exports;

- all objects that are part of this subsystem
with Flow_Control_Servo_Valve_Manager,
with Rotary_Actuator_ Manager;

with Sonar_Soundhead_ Manager;

with Sonar_Tiit_Potentiometer_ Manager;

package body Sonar_Controller Is

procedure Update Is
begin
Flow_Control_Servo_Valve_Manager.Update(
Sonar_Imports.Rate_Command,
Sonar_Imports. Hydraulic_Pressure_Avallable,
Sonar_Exports.Controlled_Pressure);

Rotary_Actuator_Manger.Update(
Sonar_Exports.Controlied_Pressure,

Sonar_Exports.Controlled_Torque};

Figure 3: Completed Subsystem Specification Form and Controller Template (truncated)

38

AAAI-92

software engineer to map the design of the models,
captured on the forms, directly into an Ada

implementation of the elements, also shown in

Figure 3.

We can now describe how the OCU provides
guidance to systems analysts and domain engineers.
The systems analyst, in consultation with the
customers and users, analyzes the application to
identify subsystems consistent with the concept of
operation and patterns of use of the application.
Each of the subsystems is assigned a specification
form and passed to the appropriate domain engineer
for completion. In addition to the identification of
subsystems, the systems analyst will provide the
domain engineer with a mapping of the training
requirements expressed in terms of model fidelity,
operational modes, and malfunctions.

Figure 4 shows a sonar subsystem schematic from a
Navy remote-controlled, minehunting, undersea
vehicle. This diagram was constructed by sonar
engineers and represents the real-world sonar
subsystem. The schematic captures the knowledge
needed by the domain engineer to model how the

D'Ippolito
April 15, 1992

sonar subsystem is constructed. For the construction
of a complete simulator, the systems analyst will
gather representative schematics and provide them,
with the specification forms, to domain engineers.

A domain engineer receives a partially completed
form and some subsystem schematics from the
systems analyst. The domain engineer then models
the real-world subsystem to match the fidelity
requirements expressed on the form. Each element
of the model is mapped to an element of the OCU,
the element models are parameterized to realize the
specified operational modes and malfunctions, and
the parameterized models are captured in a
language natural to the domain engineer. The
domain engineer completes the specification form by
recording the mapping and forwarding the form,
containing the natural language description of the
parameterized models, to the software engineer.

Figure 5 shows a representation of the sonar
subsystem as modeled by the domain engineer. The
objects remaining are those sufficient to simulate
the subsystem to match the fidelity requirements,
modes, and malfunctions. Some connections to other

1. Segment gear
2. Sonar soundhead assembly

3. Sonar mounting drive gear

4. Sonar mounting bracket

5. Bearing

6. Screw

7. Index holes

8. Potentiometer mounting clamp

9. Sonar position indicating potentiometer
10. Set screw

11. Adapter

12. Sonar clamp retaining screw
13. Shear plate

14. Actuator mounting screw

16. Actuator mount

16. Alignment spring pin

17. Rotary actuator

Figure 4: Sonar Subsystem Schematic

rotated 90°

39

D'Ippolito

AAALI-92 April 15, 1992
(E)
(P) (Env)
- -
Servo |pressure | Rotary torque} Sonar ransmit

U Comparator sonar ,m’ Valve Actuator Soundhead

M cmd recieve
B 4 (+/- Volts) :

I i

L '

|

C transmit level position

A pulse rep. rate

L slew rate limit

range reset

C

A

Bl

L composite video

E y

Sonar Tiit

- sonar tilt POtenﬂometer

EI e Ct ron ' cs an g' o e

Subsystem (+/- volts) = = = = Boundary

(E) = Energy ——g=——--
I (Env) = Environment (E)
! {p) = Pressure
Figure 5: Modeled Sonar Subsystem

subsystems on the undersea vehicle are shown as
well. Figure 6 shows an OCU diagram for the
modeled sonar subsystem.

Conclusions

Using a fixed set of templates means that the
interface mechanism between elements is known
ahead of and independent of model design. All
subsystems look (structurally) alike, and each
subsystem can be made to lie within a single
domain, with communication between subsystems
also being handled by common structures. This
means that the software engineer can proceed with
executive and test harness design. It also means
that the model specifiers can work independently in
their own domains, knowing that their models will
fit into the completed system.

Thus, a completed simulator application will consist
of as many instances of the OCU subsystem model
as required by the use and fidelity requirements.
Space limitations prevent us from describing the
additional elements used to compose the simulator
executives, but the same techniques and the OCU
are used there as well.

40

We conclude that composition by domain-specific
subsystems allows maximum freedom for the
systems analysts, domain engineers, and software
engineers to apply their expertise, and that having
common software structures results in software
applications that are more easily understood and
enhanced, 1ie., systems which have reduced
complexity.

Sonar
Controller

Sonar Sonar Tilt ow Control Rotary
Soundhead | |Potentiometer| | Servo Vaive | | Actuator
Object Object Object Object

Figure 6: Sonar Subsystem Diagram

